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ABSTRACT 

With the aim of analyzing and interpreting data on DNA polymorphism 
obtained by DNA sequencing o r  restriction enzyme technique, a mathematical 
theory on the expected evolutionary relationship among DNA sequences (nu- 
cleons) sampled is developed under the assumption that the evolutionary 
change of nucleons is determined solely by mutation and random genetic drift. 
The statistical property of the number of nucleotide differences between ran- 
domly chosen nucleons and that of heterozygosity or nucleon diversity is in- 
vestigated using this theory. These studies indicate that the estimates of the 
average number of nucleotide differences and nucleon diversity have a large 
variance, and a large part of this variance is due to stochastic factors. There- 
fore, increasing sample size does not help reduce the varimce significantly. 
The distribution of sample allele (nucleomorph) frequencies is also studied, and 
it is shown that a small number of samples are sufficient in order to know the 
distribution pattern. 

N some groups of genes, such as mitochondrial ENA, recombination is I negligible, and in this case it is possible to construct an evolutionary tree 
of alleles or nucleomorphs (NEI and TAJIMA 1981). These evolutionary trees 
indicate that the nucleomorphs sampled from different populations are often 
more similar in nucleotide sequence than some pairs of the nucleomorphs 
sampled from the same populations (BROWN 1980; NEI 1982; CANN, BROWN 
and WILSON 1982). There are three possible explanations for this observation. 
The first is natural selection, which has conserved the nucleotide sequence of 
a particular gene or gene set (nucleon) in both populations. The second is 
recent gene migration between populations. For example, American whites 
and blacks are expected to share some common nucleomorphs because of 
recent gene migration. The third is the stochastic error that is generated by 
random genetic drift. However, there is no theoretical study about the ex- 
pected phylogenetic trees under these hypotheses. 

The purpose of this paper is to present a mathematical theory on the ex- 
pected genealogy of a group of nucleons sampled and the number of nucleo- 
tide differences among them when the evolutionary change of nucleons is 
determined solely by mutation and random genetic drift. I shall also investigate 
the expected distribution of sample nucleomorph frequencies. 
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ASSUMPTION 

In this paper we consider a random mating population of N diploid individ- 
uals and assume that there is no gene migration from outside populations. We 
also assume that there is no selection and no recombination between DNA 
sequences. Following NEI and TAJIMA (1981), we call any segment of DNA 
under investigation a nucleon and a particular DNA sequence for the segment 
a nucleomorph. Nucleon and nucleomorph correspond to gene and allele in 
classical genetics. 

EXPECTED EVOLUTIONARY RELATIONSHIP OF A SAMPLE OF NUCLEONS 

Single populatioizs 
Topological relationship among nucleons: First, we consider the case in which 

nucleons are randomly sampled from a single population. When two nucleons 
are sampled, we have one common ancestral nucleon. Figure l a  shows this 
relationship. When three nucleons are sampled, we have two possible relation- 
ships. One is that a common ancestral nucleon bifurcates, and one of the 
branches again bifurcates. This relationship is shown in Figure Ib. Another 
relationship can be obtained when a common ancestral nucleon trifurcates. As 
will be shown later, the probability of the latter event is negligibly small unless 
population size is very small. Therefore, we assume that all of the branches 
are created by bifurcation. When four nucleons are sampled, there are two 
possible relationships as shown in Figure 2. The probabilities of getting rela- 
tionships a and b in this figure can be obtained by using Figure Ib. If bifur- 
cation takes place at point C or D, relationship a is obtained, whereas if 
bifurcation occurs at point E, relationship b is obtained. Since these three 
bifurcation events take place with the same probability, the probabilities of 
getting relationships a and b are ?h and l / g ,  respectively. The probability of 
getting a particular relationship among five nucleons sampled, which is shown 
in Figure 3, can be obtained by the same method using the relationships among 
four nucleons. 

In general, the probability of getting a particular type of relationship for n 
nucleons is given by 

P = 2'-/(n - l)!, (1) 
where s is the number of branching points that lead to exactly two nucleon 
descendants in the sample. For example, in the relationship of Figure 4 branch- 
ing points E, F, G and H lead to two nucleon descendants. Therefore, s = 4. 
Since n = 9, the probability of getting the relationship in this figure is P = 

We are often interested only in topological relationship. For example, rela- 
tionships c, d and e in Figure 3 can be regarded as the same topology. In this 
case the probability of getting this topology can be obtained by summing the 
probabilities of getting relationships c, d and e, i .e. ,  '/6 + '/6 + '/6 = Yz. In 
general, the probability of getting a particular topology for nucleons sampled 
can be obtained by using the following probability. The probability that a 

/(9 - I)! = 1/2520. Proof of (1) is given in APPENDIX I .  29-1-4 
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FIGURE -Expected evolutionary relationships, , ) when two nucleons are sampled and 

when three nucleons are sampled from a population. 
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FIGURE 2.-Expected evolutionary relationships among four nucleons sampled from a popula- 
tion. 

certain branching point divides n nucleons into nl and n2 nucleons (order not 
important) is 

P(n1, n2) = 2 / ( n  - 1) if nl # n2, 

P(n1, n2) = l / ( n  - 1) if nl = 122, 

where n = nl + n2. Proof of (2) is given in APPENDIX I. To show how to use 
(2), let us again use Figure 4. Point A in this figure divides nine nucleons into 
five and four nucleons. From (2) this probability is 2/(9 - 1) = %. Point B 
divides five nucleons into two and three nucleons. Therefore, this probability 
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FIGURE 3.-Expected evolutionary relationships among five nucleons sampled from a popula- 
tion. 

is 2/(5 - 1) = '/2 from (2). The probability that point C divides four nucleons 
into the two groups of two nucleons each is 1/(4 - 1) = !h from (2). Then 
the probability of getting the topology in Figure 4 is % X '/2 X !h = l/24. 

One interesting point emerging from this study is that the probability of one 
nucleon being quite different from the others is not very low. For example, 
when we sample 20 nucleons, the probability that 20 nucleons are divided into 
one and 19 nucleons is 2/(20 - 1) = */19 from (2), which is not very low. 

Branch length: Next, we consider the branch length of a nucleon genealogy. 
It is convenient to measure the branch length in terms of the number of 
generations. LetJ;,(t) be the probability that n + 1 nucleons randomly sampled 
from a population are derived from n nucleons t generations ago and the 
divergence took place t - 1 generations ago. Here, t is a random variable, and 
n is a fixed number. 
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FIGURE 4.-One example of the topological relationship among nine nucleons sampled from a 
population. 

We first consider the case in which two nucleons are sampled. The topo- 
logical relationship is shown in Figure la. The probability that two nucleons 
are derived from a common ancestral nucleon in the immediately previous 
generation is 

fi(1) = 1/(2N), 

where N is the number of diploid individuals in a population. Therefore, we 
have 

f i ( t )  =f1(1)(1 -fi(l)lt-l = W(2”l - l/(2N)lt--l 
(3) = 1/(2N)1expW(2”. 

This formula gives the probability distribution of branch length in terms of 
the number of generations (t). The mean [E(t)] and variance [V(t)] of the 
distribution are given by 

E(t) = 2N, V(t) = 4 f l .  

When three nucleons are sampled, we have shown that there is only one 
topological relationship as shown in Figure lb.  The branch length between A 
and B in this figure is the same asfi(t). Let us obtain the branch length between 
B and C, which isf2(t) by definition. The  probability that three nucleons are 
derived from a common ancestral nucleon in the immediately previous gen- 
eration is 

1/(2N)* = 0. 
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This indicates that trifurcation is a very rare event. Therefore, we disregard 
it from consideration. The probability that three nucleons were derived from 
two nucleons in the immediately previous generation is 

h(1)  = (%1/(2N)J(1 - 1/(2N)1 z 3/(2N), 

whereas the probability that three nucleons are derived from three different 
nucleons in the immediately previous generation is 

(1  - 1/(2N)]{l - 2/(2N)) x 1 - 3/(2N). 

From these probabilities we obtain 

h(t) = {3/(2N)){l - 3/(2N)]'-' z {3/(2N))exp{-3t/(2N)]. (4) 
This gives the probability distribution of branch length between B and C in 
Figure lb. The mean and variance of branch length (t)  are given by 

E(t) = 2N/3, 

This indicates that the mean branch length between B and C is three times 
shorter than that between A and B. 

V(t) = 4N2/9. 

Similarly, we can obtain J&), which becomes 

&(t) = F$')/(2N)l { 1 - ('*?)/(2N)]*-' z I(":')/(ZN))expl-("t')t/(2N)). ( 5 )  
Recently HUDSON (1983) has also obtained ( 5 )  and used it for simulating the 
evolution of proteins. The mean and variance o f t  are given by 

E(t) = 2N/(":'), (6) 

V(t) = 4P/(":')? (7) 
The probability that n nucleons randomly sampled from a population are 

derived from m nucleons t generations ago (m < n) can be obtained from the 
convolution of &I@), J4), . . . , $( t ) .  The mean and variance of t are then 
given by 

n 

E(t) = 2N 2 {l/(h)) = 4N(l/m - l/n), (8)  
i=m+l 

n 

V(t) = 4N2 2 (1/(1)2). 
i=m+l 

(9) 

In the case of m = 1, namely, when n nucleons are derived from a common 
ancestral nucleon, the mean and variance o f t  are given by 

11 

V(t) = 4N2 z (I/(;)*). 
i=2 

As n increases, E(t) and V(t) quickly approach 4N and 16fl(?r2/3 - 3), respec- 
tively. Note that when n = 2147, these values are essentially the same as those 
of fixation time of a newly arisen neutral mutant (KIMURA and OHTA 1969; 
BURROWS and COCKERHAM 1974). In fact, we can obtain the mean fixation 
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time when the initial frequency of mutant is k/(2N) by using (8), which becomes 

As N increases, (12) approaches E(tlp) = -4N(l/p - l)log,(l - p), where 
p = k/(2N). This is identical with the formula obtained by KIMURA and OHTA 
(1969) using diffusion approximations. 

Two populations 
So far we have considered the case in which nucleons are sampled from a 

single population. We now consider the case in which nucleons are sampled 
from two populations. Let us assume that each population consists of N diploid 
individuals, and that these two populations have separated t generations ago. 
When four nucleons (two nucleons from each population) are sampled, there 
are four possible topological relationships as shown in Figure 5 .  The probability 
of getting a particular topological relationship can be obtained by applying the 
relationships obtained for single populations. For example, topology c can be 
obtained only when the following four conditions are satisfied: (1) Two nu- 
cleons sampled from one population do not have a common ancestral nucleon 
more recently than t generations ago. (2) Two nucleons sampled from another 
population also do not have a common ancestral nucleon more recently than 
t generations ago. Each of these probabilities is given by 

1 

1 - 1 f i ( i )  = exp{-t/(ZN)}. 

(3) We have topological relationship b in Figure 2. The probability of having 
this relationship is %. (4) Each of two groups consists of two nucleons that are 
sampled from different populations. This probability is Y3. Therefore, the prob- 
ability of getting topological relationship c in Figure 5 is 

[exp{-t/(2~))]* x % x % = (%)exp(-t/N). 

The other probabilities can be obtained in the same way, and they are given 
in Figure 5 .  

Figure 6 shows the relative probabilities of having the four different topo- 
logical relationships in Figure 5. When the time of divergence between two 
populations is short, topological relationship d occurs with the highest proba- 
bility, but as the divergence time becomes longer, the probability of getting 
relationship a becomes higher. Note that the probability of getting relationship 
a is not very high unless two populations separated a long time ago. For 
example, when two populations diverged 4N generations ago, this probability 
is still 0.83. 

1=1 

NUMBER OF NUCLEOTIDE DIFFERENCES BETWEEN RANDOMLY CHOSEN 
NUCLEONS 

In this and the following sections we consider mutation and assume that the 
mutation rate is the same for all nucleotides. 
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FIGURE 5.-Expected evolutionary relationships among four nucleons sampled from two pop- 
ulations, e.g., populations A and B, which diverged t generations ago. It is assumed that two 
nucleons are sampled from population A and the other two nucleons are sampled from population 
B. N is the effective population size in each population. 

Probability distribution 
Let us consider two randomly chosen nucleons from a population. If a nu- 

cleon consists of m sites and each site takes one of K states (K = 4 in the case 
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0 2N 4N 6N 8N 

TIME IN GENERATIONS 
FIGURE 6.-Relationship between the probability of obtaining a certain type of evolutionary 

relationship in Figure 5 and the divergence time of two populations. 

of four nucleotides), the probability that the number of nucleotide differences 
between two nucleons is k, given that these two nucleons are derived from a 
common ancestral nucleon t generations ago and the divergence took place 
t - 1 generations ago, is given by 

Wit) = (T)[g(K, m ,  t)Ik[l - g ( ~ ,  m, t ) ~ " - ~ ,  (13) 
where 

- (I - exp [- 2Kv t]}, 
K (K - 1)m g(K, m, t )  = - 

and v is the mutation rate per nucleon per generation. g(K, m, t) is the prob- 
ability that a particular site is polymorphic and can be obtained from equation 
(30) in TAKAHATA (1982). (Note that in his paper v is the mutation rate per 
site, not per nucleon.) Since the number of nucleotide differences for a given 
value of t follows the binomial distribution with probability g(K, m, t), we obtain 
(1 3). By using (3), we can obtain the probability that the number of nucleotide 
differences between two randomly chosen nucleons from a population is k. It 
is given by 

The mean and variance of k are given by 
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(K - 1)m 

(K - 1)m 

+{1-:[1+ (K - 1)m MT (16) 

(K - 1)m 
.[l + 

where M = 4Nv. 
Since K is equal to 4 and m is generally very large, we use the infinite-site 

model in the following. In this model we assume that the number of sites on 
a nucleon is so large that a newly arisen mutation takes place at a site different 
from the sites where the previous mutations have occurred. Under this model 
P(k I t )  is given by 

P(k I t )  = exp(-2~t)(2vt)~/k!. (17) 
Therefore, from (1 4) we have 

which is identical with the formula obtained by WATTERSON (1975) using a 
different method. Application of BAYES’ theorem gives the probability that two 
randomly chosen nucleons were derived from a common ancestral nucleon t 
generations ago and the divergence took place t - 1 generations ago, given 
that the number of nucleotide differences between two nucleons is K .  It be- 
comes 

f i ( t  I k) = P(k I t)h(t)/P(k) = [( 1 + M)/(2N)]””tkexp[-( 1 + M)t/(2N)]/k!. (19) 
The mean, variance and mode o f t  for a given value of k are 

E ( t l k )  = 2N(1 + k)/(l + M), 

V(t I k) = 4N2( 1 + A)/ (  1 + M)2, 

Mode(t1k) = 2Nk/(l + M). 

Some of the distributions of t for a given number of nucleotide differences 
are given in Figure 7, where N = lo5 and v = low6 are assumed. It is clear 
that the distribution is very flat for all values of k. Therefore, k does not give 
a very reliable estimate of t. When k is large, however, it gives a reasonably 
reliable estimate o f t  in terms of the coefficient of variation, as will be discussed 
later. 
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M = 0.4 

N = 105 

v = 10'6 
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t 

FIGURE 7.-Probability distribution [J(t I k)] of the number of generations ( t )  after divergence 
of two nucleons, given that k nucleotides are different between two nucleons. Arrow indicates the 
mean of t .  

Mean nucleotide dzfferences for a sample of nucleons 

mated from pairwise comparison by using the infinite-site model. 

of k are obtained by substituting m = 00 into (15) and (16). They become 

In this section we study the average number of nucleotide differences esti- 

When two nucleons are sampled from the population, the mean and variance 

E(k) = M ,  (23) 
(24) V(k) = M + M2,  

which agree with WATTERSON'S (1975) result obtained by a different method. 
When three nucleons are sampled, their evolutionary relationship is given by 
Figure lb. In this case we have three estimates, that is, the numbers of nu- 
cleotide differences between C and D, between C and E and between D and 
E (Figure lb). If we denote the number of nucleotide differences between 
nucleons i a n d j  by k,, the following relationships are obtained since under the 
infinite-site model every mutation can be recognized. 

l t c ~  = kx + ~ B D ,  

~ C E  = ksF -t kx -I- REF, 

 DE = ~ B F  + ~ B D  kEF. 
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From ( 2 3 )  and (24) we have 

E ( ~ B F )  = M ,  v ( k ~ )  = M + M'. 

The means, variances and covariances of k ~ c ,  and k E F  are given by 
m m  

E ( ~ B c )  = E ( b )  = E ( ~ E F )  = 1 kf,( t)Q(k I t )  = M / 6 ,  
t=1 k=O 

V(&) = V(kB,) = V ( ~ E F )  = 1 C k2f,(t)Q(k I t )  - (M/6)' = M / 6  + (M/6)',  
t = l  k=O 

Cov(k~c, ~ B D )  = CoV(k~c, K E F )  = COV(kBo, ~ E F )  
m m m  

= c c c klk2f2(t)Q(kl I t )Q(h It) - (M/6)' = (M/6)'1 
f=1 k , = 0  k*=0 

where Q(K I t )  = exp(-vt)(z#/k!. Therefore, we have 

E ( k C D )  = E ( k B C )  + E(kBLJ) = M / 3 ,  

V ( k c ~ )  = V ( ~ B C )  + V ( ~ B D )  + 2 COV(~BC, ~ B D )  = M / 3  + (M/3)', 

E ( k c ~ )  = E ( ~ E F )  + E ( k )  + E ( k E F )  = (%)M, 
V(kcE) = v ( k B F )  + v(&) + V ( k E F )  + 2 COV($C, k E F )  = (4/3)M + ('%)M2, 

E(&) = E ( ~ ; E ) ,  V ( ~ D E )  V ( k c ~ ) .  

Using these formulas, we can obtain the means and variances of the average 
numbers ( k j  of nucleotide differences. They are 

E(kj = E [ ( ~ c D  + ACE + k D E ) / 3 ]  = M ,  

v(kj = V [ ( k C D  + kce + kDE)/3] = (%)M + (5/!)M2. 
(25 )  

(26) 
The mean and variance of the average number of nucleotide differences for 

a given sample size can be obtained in the same way. For example, when four 
nucleons are sampled, there are two types of evolutionary relationships as 
shown in Figure 2. Using the same method, we obtain 

E,(/$ = ('VlB)M, vo(i) = (53/10S)M + (115/324)M2 

for type a, and 

E& = ( I O / ~ ) M ,  = ( 3 7 / 5 4 ) ~  + ( 8 ~ 1 6 2 ) ~ '  

for type b. Note that both the mean and variance of i for the type a relation- 
ship are different from those for the type b relationship and that whether the 
values are overestimates or underestimates o<M depends on the type of rela- 
tionship. The overall mean and variance of k can be obtained by taking into 
account the probability of getting a certain type of relationship. In this case 
the probabilities of getting types a and b are % and l / g ,  respectively. Therefore, 
we have 

E ( l )  = (%)E,(kj + (%)E& = M ,  (27) 
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(28) 
V(kj = (%)V,(kj + (!h)Vb(kj + (%)[E,(kj - E(kj12 + (l/s)[Eb(L) - E(L)I2 

= (5/9)M + (23/54)M2. 

In general, the mean and variance of the average number of nucleotide 
differences between two nucleons when n nucleons are sampled from the pop- 
ulation are given by 

E(kj = M ,  (29) 
n + l  2(n2 + n + 3) 

9n(n - 1) 
V(kj = M +  M2.  

3(n - 1 )  

Proof of (30) is given in APPENDIX 11. As n increases, (30) approaches 

V,(kj = (%)M + (2/9)M? (31) 
We call this variance the stochastic variance. The sampling variance is given 
by 

2(2n + 3, M2. V,(kj = V( i )  - VSt(i)  = M +  
3(n - 1) 9n(n - 1) 

Table 1 shows the relationship between the standard deviation (ai = 
[V(kj]”*) of f f  and sample size n. As expected, ai decreases as n increases but 
quickly reaches the asymptotic value. Thus, if we sample ten nucleons, the 
estimate of k  ̂ is nearly as reliable as that obtained from a sample of n = 200. 
This indicates that for estimating the number of heterozygous nucleotide sites 
a sample size of ten (or even five) is sufficient. 

NUCLEON DIVERSITY 

Nucleon diversity is defined as the probability that two nucleons randomly 
chosen from a population are different (NEI and TAJIMA 1981). It is essentially 
the same as heterozygosity used in the study of protein polymorphism. In this 
section we use the K-allele model, in which a nucleon is assumed to take one 
of K allelic states, and the rate of mutation is the same for all alleles or 
nucleomorphs. In the earlier part of the previous section we considered the 
m-site-K-state model. If a nucleon has only one site, i.e., m = 1, and this site 
takes one of K states, then this model becomes identical with the K-allele 
model. Let us denote by P(0) the probability that two nucleons randomly 
chosen from a population are identical and P(1) = 1 - P(0) .  The probability 
that two nucleons randomly chosen from a population are identical, given that 
these two nucleons separated t generations ago, is given by 

P(0 I t )  = 1/K + [(K - l)/K]exp[-PKvt/(K - I)], (33) 
whereas the probability that two nucleons randomly chosen from a population 
are different, given that these two nucleons separated t generations ago, is 

~ ( 1  It)  = [(K - 1)/K](l - exp[-ZKvt/(K - l)]]. (34) 
Equation (33) can be obtained by substituting = 1 and k = 0 into (13), and 
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TABLE I 

Effect ofsainple size (n) oil &he standard deviations ofthe nucleon diversity (A) und the 
average number of nucleotide differences (k). 

2 0.091 
5 

10 
50 

200 
m 

2 
5 

10 
50 

200 
m 

0.500 

2 0.909 
5 

10 
50 

200 
m 

M = 0.1 

0.287 0.100 0.332 
0.199 0.232 
0.178 0.209 
0.163 0.192 
0.160 0.190 
0.159 0.189 

M = l  

0.500 
0.296 
0.247 
0.2 12 
0.206 
0.204 

M =  10 

1 .ooo 1.414 
0.93 1 
0.829 
0.761 
0.749 
0.745 

0.287 10.000 10.488 
0.113 6.455 
0.070 5.655 
0.040 5.160 
0.034 5.081 
0.033 5.055 

(34) can be obtained from P( 1 I t )  = 1 - P(0 I t). From (14) we have 

P(0) = (K - 1 + M)/(K - 1 + KM), 

P(1) = (K - l)M/(K - 1 + KM). 
(35) 

(36) 
Equation (36) was first derived by KIMURA (1968) using a different method. 
Application of BAYES’ theorem gives the probability that two nucleons diverged 
t generations ago, given that the two nucleons are identical [ f i ( t  I O)] or differ- 
ent [ f i ( t l  1)) Namely, 

f i ( t I0 )  = P(OIt&(t)/P(O) = {1/K + [ (K - 1)/K]exp[-2Kut/(K - I)]) 

fi(tl1) = P(l It&(t)/P(l) = [ l  - exp[-SKvt/(K - I)]) 
(37) x [1/(2N)lexp[-t/(2N)l(K - 1 + KM)/(K - 1 + M), 

(38) 
X [1/(2N)lexp[-t/(PN)](K - 1 + KM)/(KM). 

The mean o f t  for a pair of identical nucleons is given by 

E( t I0 )  = 2N(1 - (K - l)*M/[(K - 1 + M)(K - 1 + KM)]), (39) 
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whereas that for a pair of nonidentical nucleons is given by 

E(tl 1) = 2N[1 + (K - l)/(K - 1 + KM)].  (40) 
Furthermore, their respective variances are 

(41) 

(42) 

(43) 

(44) 

(45) 

(46) 

v(t I 0) = 4 ~ 2 (  1 - (K - 1 ) 3 ~ [ 2 ( ~  - 1) 

+ (K + l)M]/[(K - 1 + M)2(K - 1 + KM)']), 

V(tl 1)  = 4N2[1 + (K - l)'/(K - 1 + KM)']. 

E ( t l 0 )  = 2N/(1 + M ) ,  

E(tl 1) = 2N[1 + 1/(1 + M)], 

V(t I O )  = 4N2/( 1 + M)', 

V(tl 1 )  = 4N2/[1 + 1/(1 + M)']. 

As K increases, the mean and variance approach the following formulas. 

Figure 8 shows the relationship between M and E(tIk), where K = 4 and 
K = 00 are assumed. In the case of K = 03, both the mean of t [E(tIO)] for a 
pair of identical nucleons and that [E(tl l)] for a pair of nonidentical nucleons 
decrease as M increases. Interestingly, the difference between them is always 
2N generations [see (43) and (44)]. On the other hand, in the case in which K 
is a finite number, both E(t l0)  and E(tl1) approach 2N generations as M 
increases [see (39) and (40)]. In either case the variance of t is too large to 
obtain a reliable estimate of t .  

In the case of DNA sequences there are many possible nucleomorphs, so 
that K is very large. Therefore, we can use the infinite-allele model, in which 
the number of possible nucleomorphs is assumed to be so large that any mu- 
tation creates a new nucleomorph. When two nucleons are sampled from a 
population, the mean and variance of nucleon diversity (H) are given by 

E(H) = M/(1 + M), 

V(H)  = M/( 1 + M)? 
(47) 

(48) 

These formulas can be obtained by substituting K = 00 and m = 1 into (15) 
and (16). 

When the sample size is more than two, we must again consider the rela- 
tionship between nucleons as we did in the case of the infinite-site model. We 
can then obtain the probability that the average nucleon diversity is H for a 
given sample size. For example, in the case in which three nucleons are sam- 
pled from the population, this probability is given by 

P r ( f i  = 0 )  = 2/[(1 + M)(2 + M)], 

P r ( A  = 1 )  = M*/[(1 + M)(2 + M)]. 

P r ( f i  = %) = 3M/[(1 + M)(2 + M)], 
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I I i 
0 2 4 6 

M 
FIGURE 8.-Relationship between the expected number of generations [E(li k ) ]  after divergence 

of two nucleons, given that two nucleons are identical (k = 0) or that two nucleons are different 
(k  = I) ,  and the value of M .  

From this we obtain 

E ( f i )  = M/(1 + M ) ,  

V(A) = M ( 4  + M)/[3(1 + M)*(2 + M ) ] .  

In general the mean and variance of fi when n nucleons are sampled from 
a population are given by 

E(Ei) = M/(1 + M ) ,  (49) 
V(fi) = 2M(n + M)(n  + 1 + M ) / [ n ( n  - 1)(1 + M)*(2 + M)(3  + M ) ] ,  (50) 

respectively. As n increases, this variance approaches 

V&) = 2M/((1 + M)2(2 + M ) ( 3  + M ) ] ,  (51) 
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which agrees with the earlier result obtained by WATTERSON (1974a), LI and 
NEI (1975) and STEWART (1976). The sampling variance is given by 

V,(tj) = V ( t j )  - VSl( f i )  
(52) 

= 2M(2n + M)/(n(n  - 1)(1 + M)(2 + M)(3 + M ) ) ,  

which again agrees with the earlier result by NEI (1978). 
The effect of sample size on the standard deviation (U& = [V(fi)]"2) of fi 

can be seen from Table 1. When M is relatively small, the effect of increasing 
n beyond 10 is relatively small as in the case of UL. However, when M is large, 
06 is significantly reduced by increasing n to more than 10. 

DISTRIBUTION OF SAMPLE NUCLEOMORPH FREQUENCIES 

WATTERSON (1974b) presented a formula for computing the expected num- 
ber of nucleomorphs (alleles) with a given frequency in the sample. In this 
section, we derive this formula by using a different but simple method. We 
use the infinite-allele model in this section. 

In the case of n = 2, the probability that the two nucleons sampled are 
identical is 1/(1 + M) and that the probability that the two nucleons are 
different is M / (  1 + M). Therefore, the expected number of nucleomorphs with 
frequency 1 is F2(1) = 1/(1 + M), and the expected number of nucleomorphs 
with frequency ?'" is F$h) = 2M/(1 + M). 

When n is larger than 2, we must again consider the relationship between 
nucleons studied earlier. The expected number of nucleomorphs with fre- 
quency x in a sample of n nucleons is given by 

F?,(O) = 0 ,  

F,(x) = Mx-'(l - x)-'/ n JJ (1  + M / i )  when 0 < x < 1 ,  (53) [ 1 
n-1 

F,l(l) = 1/n (1  + M/i ) .  
I =  I 

Proof of (53) is given in APPENDIX 111. As n increases, F,,(x) approaches 
MX-'( 1 - ~ ) ~ - ' / n ,  since 

11-1 

Iim fl (1  + M / i )  = ( 1  - x)". 
~ + c a  +it(  1 -x) 

Some examples of this distribution are given in Table 2. It is clear that a 
small number of samples are sufficient in order to know the distribution pat- 
tern unless M is very large. 

DISCUSSION 

Our study on the topological relationship among nucleons has shown that 
when the time since divergence between two populations is relatively short a 
nucleon sampled from one population is often more similar to the one sampled 



454 F. TAJIMA 

TABLE 2 

Expected nuinber of nucleoinorphs with frequency x for  a given sample size (n) 

n 

X 10 50 200 10,000 

0.00-0.05 
0.05-0.1 5 
0.15-0.25 
0.25-0.35 
0.35-0.45 
0.45-0.55 
0.55-0.65 
0.65-0.75 
0.75-0.85 
0.85-0.95 
0.95-1 .OO 

Total 

0.00-0.0 5 
0.05-0.1 5 
0.15-0.25 
0.25-0.35 
0.35-0.45 
0.45-0.55 
0.55-0.65 
0.65-0.75 
0.75-0.85 
0.85-0.95 
0.95-1.00 

Total 

0.00-0.05 
0.05-0.15 
0.15-0.25 
0.25-0.35 
0.35-0.45 
0.45-0.55 
0.55-0.65 
0.65-0.75 
0.75-0.85 
0.85-0.95 
0.95-1 .OO 

Total 

0.000 
0.1 10 
0.061 
0.046 
0.039 
0.037 
0.038 
0.042 
0.052 
0.084 
0.759 
1.269 

0.000 
1 .ooo 
0.500 
0.333 
0.250 
0.200 
0.167 
0.143 
0.125 
0.111 
0.100 
2.929 

0.000 
5.263 
1.316 
0.4 13 
0.135 
0.043 
0.013 
0.003 
0.001 

7.188 

M = 0.1 

0.154 
0.119 
0.062 
0.046 
0.040 
0.037 
0.038 
0.042 
0.054 
0.094 
0.747 
1.433 

M = l  

1.500 
1.093 
0.508 
0.336 
0.251 
0.201 
0.167 
0.143 
0.125 
0.111 
0.061 
4.499 

M =  10 

12.054 
5.127 
0.899 
0.204 
0.046 
0.009 
0.002 

18.342 

0.292 
0.120 
0.062 
0.046 
0.040 
0.037 
0.038 
0.042 
0.054 
0.095 
0.745 
1.572 

2.879 
1.099 
0.51 1 
0.336 
0.251 
0.201 
0.167 
0.143 
0.125 
0.1 11 
0.054 
5.878 

25.016 
4.921 
0.791 
0.163 
0.032 
0.006 
0.001 

30.930 

0.684 
0.120 
0.062 
0.046 
0.040 
0.037 
0.038 
0.042 
0.054 
0.095 
0.745 
1.963 

6.792 
1.099 
0.511 
0.336 
0.251 
0.201 
0.167 
0.143 
0.125 
0.111 
0.05 1 
9.788 

63.841 
4.818 
0.753 
0.150 
0.028 
0.005 
0,001 

69.595 

from the other population than to another nucleon sampled from the same 
population (Figure 5b, c, d). This is counter-intuitive, but the probability of 
this event is large when t I 2N. This finding has an important implication for 
interpretation of data. For example, CANN, BROWN and WILSON (1982) and 
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NEI (1 982) constructed evolutionary trees for mitochondrial DNAs sampled 
from various human races (whites, American blacks, Orientals, etc.). Although 
mtDNAs from the same race generally showed a higher similarity with each 
other than with those from other races, there were many exceptions. This led 
to the suggestion that some of the exceptions are due to interracial gene 
admixture. The present finding indicates that such exceptions can occur even 
without gene admixture. 

When genetic variation within populations is measured, the average number 
of nucleotide differences (nucleotide diversity) is more informative than het- 
erozygosity or nucleon diversity, since the former gives information on the 
extent of DNA difference between two randomly chosen genes, whereas the 
latter gives information only on whether a pair of genes (or nucleons) are the 
same or not. There are two other quantities for measuring genetic variation, 
i.e., the number of alleles or nucleomorphs by EWENS (1972) and the number 
of segregating (nucleotide) sites by WATTERSON (1975). When all of the mu- 
tants observed are selectively neutral, the number of segregating sites gives the 
best estimate of M or nucleotide diversity among the four methods because of 
the smallest variance of the estimate of M. However, when some of the mutants 
observed are deleterious, this measure is not necessarily good. Deleterious 
mutants are maintained in a population with low frequency. Since the number 
of alleles (nucleomorphs) and the number of segregating sites ignore the fre- 
quency of mutants, these two quantities might be strongly affected by the 
existence of deleterious mutants. On the other hand, in the average number 
of nucleotide differences and heterozygosity the frequency of mutants is con- 
sidered, so that the existence of deleterious mutants with low frequency does 
not affect these quantities very much. Furthermore, even if deleterious mutants 
affect these four quantities, the average number of nucleotide differences and 
heterozygosity have clear biological meanings. Although the number of alleles 
(nucleomorphs) and the number of segregating sites are biologically clear, these 
two quantities cannot be used directly since they are dependent on the sample 
size. For these reasons, I would like to recommend that the average number 
of nucleotide differences be used for measuring genetic variation within pop- 
ulations. 

Nevertheless, it should be noted that the average number of nucleotide 
differences is accompanied by a large variance. This can be seen from 
AQUADRO and GREENBERG’S (1983) data. These authors studied a sequence of 
about 900 nucleotide pairs of the human mitochondrial DNA for :even indi- 
viduals (nucleons). The average number of nucleotide differences (k) estimated 
was 15.4. From (30), (31) and (32), we estimate the total variance, stochastic 
variance and sampling variances of k^ to be 80.9, 57.8 and 23.0, respectively. 
Thus, a majority of the total variance is attributed to stochastic errors. 

As mentioned earlier, we can estimate the number of generations after di- 
vergence between a pair of nucleons from (20). In AQUADRO and GREENBERG’S 
(1983) data, the number of nucleotide (ifferences (k) between nucleons 1 and 
2 (see Table 2 in their paper) is 5 .  If k = 15.4 is an accurate estimate of M 
[see (29)], the estimate of the number of generations after divergence of these 
nucleons is 0.7N f 0.3N from (20) and (21). On the other hand, the number 
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of nucleotide differences between nucleons 3 and 4 is 28, and the estimate of 
the number of generations is 3.5N k 0.7N. This example shows that the 
estimate o f t  has a smaller coefficient of variation when R is large than when 
k is small. 

When M is large and sample size is small, all nucleons sampled are often 
different. For example, all 21 human mitochondrial DNAs studied by BROWN 
(1980) were different with respect to restriction-site sequence. It is, therefore, 
interesting to know the probability that all n nucleons sampled from a popu- 
lation are different. This probability can be obtained in the following way. We 
first note that for all n nucleons sampled to be different from each other a 
particular nucleon of the n nucleons sampled must be different from the re- 
maining 12 - 1 nucleons. At the same time, a particular nucleon of the n - 1 
nucleons must be different from the n - 2 remaining nucleons. A similar 
condition is required for all n - i, where i is 0, 1 ,  2, . . . , n - 1 .  We also note 
that the probability of a particular nucleon of the i nucleons sampled being 
different from the remaining i - 1 nucleons is Fi(l/i)/i from (53). Thus, the 
probability that all j z  nucleons sampled from a population are different from 
each other is given by 

7=2 i= 1 
(54) 

Incidentally, the probability that all n nucleons sampled from a population are 
identical is 

77-1 

F, , ( l )  = 1/n ( 1  + M/i) .  
i= 1 

(55) 

These formulas are identical with the formulas obtained by EWENS ( 1  972) using 
a different method. For example, in the case of AQUADRO and GREENBERG’S 
(1983) data, our estimate of M is 15.4 and n is 7. From (54) the probability 
that all seven sampled nucleons are different is 0.30. 

Recently, WATTERSON ( 1  982a, b) showed that the times at which mutations 
at nucleotide sites become fixed in a population tend to cluster together rather 
than behave as a Poisson process when the nucleotide sites are completely 
linked. This implies that, when two loci are linked, the behaviors of two loci 
are not independent. We can see this from two different points of views. 

Let us assume that two loci, say loci A and B,  are completely linked and that 
the mutation rate at each locus is U. When we sample two chromosomes from 
a population, the probability that both loci A and B are homozygous is 
1 / (1  + 2M),  which is not equal to 1/(1 + W2. Thus, two loci are not inde- 
pendent. Namely, given that locus B is homozygous, the probability that locus 
A is homozygous is ( 1  + M)/(l + 2M). Similarly, given that locus B is hetero- 
zygous, the probability that locus A is heterozygous is 2M/(1 + 2M). These 
probabilities are larger than those for independent loci. In fact, the heterozy- 
gosity for locus A is positively correlated with that for locus B as will be 
published elsewhere. 
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Another way to see the correlation between linked loci is to study the av- 
erage number of nucleotide differepces. If, we denote k*'s for loci A and B by 
LA and &, the covariance between k A  and K B  is given by 

and the correlation coefficient is 

p ( i ~ ,  I&) = 1/[1 + 3n(n + 1)/(2(n2 + n + 3 ) M } ] .  

These results can be obtained from the following relationship. 

v ( k A  + i B )  = v(&) + 2 CO"(&, L E )  + v(LB), 

(57) 

where V(&) and V(&) are given by (30), and V(iA + &) are obtained from (30) 
by using 2M instead of M. Again, this quantity is positively correlated. 

From these studies we can conclude that, when a locus is highly polymorphic, 
a locus linked to it also tends to be highly polymorphic. 

I thank M. NEI, G. A. WATTERSON and R. CHAKRABORTY for valuable suggestions and com- 
ments. 
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APPENDIX I: TOPOLOGICAL RELATIONSHIP AMONG NUCLEONS RANDOMLY 
SAMPLED FROM A POPULATION 

Let us consider the evolutionary relationship among n nucleons. We assume that all of the 
branches are created by bifurcation. Let us start from a common ancestral nucleon. The bifurca- 
tion of this ancestral nucleon creates two branches (see Figure la). Next, one of two branches 
bifurcates. In this case there are two possible ways of bifurcation, although they create the Same 
relationship (see Figure lb). After continuation of this process, one of n - 1 nucleons finally 
bifurcates. In this case there are n - 1 possible ways of bifurcation. Thus, there are (n - 1)l 
possible ways of bifurcation to create n nucleons from a common ancestral nucleon. As we have 
noticed, however, some bifurcations create the same relationship. There are n - 1 branching 
points in a tree with n nucleons. When a particular branching point is asymmetrical, there are two 
ways of bifurcation that create the same relationship. This is because we  regard two trees that are 
mirror imaged as the same relationship. The number of asymmetrical branching points is n - 1 
- s, where s is the number of branching points that lead to exactly two nucleon descendants in 
the sample. Thus, we obtain (1). 

We now study the topological relationship among n nucleons. Let us consider the case in which 
a particular branching point divides n nucleons. We denote by Q(n1, n z l n )  the probability that 
the left side of this branching point has nl nucleons and the right side of it has n2 nucleons, 
where n~ + n p  = n. When one of these n nucleons bifurcates, bifurcation occurs on the left side 
with probability n ~ / n  and on the right side with probability nZ/n. Thus, we have 

Q(I11, n21n) = Q(lzi - 1, n z ( f 1  - I)(ni - I)/(n - 1) + Q(ni, ?le - 1 In - l ) ( ~  - l)/(n - 1). (Al) 
By using Q(1, 1 12) = 1 as the initial condition, we obtain 

Q(n1, m l n )  = l/(n - 1). ('42) 
If we denote by P(n1, nz) the probability that a certain branching point divides n nucleons into nl 
and n 2  nucleons (order not important), we obtain (2). 

APPENDIX 11. MEAN AND VARIANCE OF THE AVERAGE NUMBER OF 
NUCLEOTIDE DIFFERENCES 

The average number of nucleotide differences is defined by 

k̂  = 22 k,/(B), 
K J  
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where k, is the number of nucleotide differences between the ith and j th  nucleons. Since E(kJ = 
M from (23), we obtain 

E ( 6  = 22 E(kJ/(;) = M .  (A4) 
KI 

The variance of k  ̂ is 
V(L) = E(k') - (E(&'. 

P can be written as 

Let us now define 

U2 = E(k?) - M 2 ,  

U3 = E(kvk;,) - M2,  

U4 = E(k,ik,J - M2.  

Since E(g) = M from (A4), (A5) becomes 

r#j#r#s 

= (U, + 2(n - 2)Us + ("sz)U4}/(;). 

When n = 2, V($) = M + fl from (24). Therefore, from (A8) we have 

M + M2 = Us. 

When n = 3, V(i)  = (%)M + (%w from (26). Thus, we have 

(%)M + (%)M2 = (U2 + 2Us)/3. 

When n = 4,  from (28) we have 

(%)M + ("/54)M1 =I (U2 + 4Us + U4)/6. 

From (A9), (A10) and (AI l), we get 

U2 = M + Mz, 

U3 = (%)M + ('/s)nP, 

U4 = (%)M + (Z/9)A4Z. 

By substituting (A12) into (AS), we obtain 

M2.  11 + 1 
3(n - 1) 

2(n2 + n + 3) 
+ 9n(n - 1 )  V ( i )  = - 

APPENDIX 111. EXPECTED NUMBER OF NUCLEOMORPHS WITH A GIVEN 
FREQUENCY IN THE SAMPLE 

The expected number of nucleomorphs with frequency (p, p + dp)  in a population is 

+(P)dP = MP-V - P Y d P  

('413) 
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(KIMURA and CROW 1964). The expected number of nucleomorphs with frequency x (= i /n )  in a 
sample of 17 nucleons is given by 

= l1 (W(1 - P)"-'WJ)dP. (A 14) 

When 0 < x < 1 ,  (A14) becomes 
r ,,-I 1 

(A 15) F,,(x) = Mx-'(l - x)-'/ 11 n (1 + M / i )  . 1 ,-n(l-z) i- 
When x = 1 ,  (A14) becomes 

VI-1 

F,c(l) = 1 /  n ( 1  + M / i ) .  
2- I 


